MTH 522 – 09/27/2023

I successfully learnt and applied the technique of 5-fold cross-validation and polynomial regression. The process of translating this technique into Python was pleasant, albeit not without problems. Adapting the data pretreatment methods, guaranteeing data consistency, and dealing with any data anomalies were all key challenges. Furthermore, transferring the nonlinear model fitting part into Python necessitated a good understanding of Python tools such as scikit-learn as well as modeling functions.

Another noteworthy task was reproducing data visualizations, specifically the ListPlot of mean square error (MSE) data, using Python plotting packages such as Matplotlib or Seaborn. Python’s syntax and customisation choices for creating similar charts differed from those in Mathematica. Finally, debugging and error handling were critical in verifying that the Python code generated results that were consistent with the Mathematica code. Despite these difficulties, the translation process gave an excellent opportunity for me to improve my grasp of cross-validation and polynomial regression within a Python programming context.

Leave a Reply

Your email address will not be published. Required fields are marked *